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Abstract 

Geodesy is the Earth science that studies the form of the Earth (including its geometry and its gravity), its rotation 

and orientation in space. Thanks to the development of space techniques, the study of crustal deformations by using GNSS 

(Global Navigation Satellite System), the ocean topography by satellite altimetry, the temporal variations of the gravity field 

(mass transports), as well as the construction and monitoring of the International Terrestrial Reference Frame (ITRF) are some 

examples of the contribution of these techniques to the Earth observation including the current global change. Determining the 

gravity field of the Earth by satellite orbital analysis (to be monitored by the laser measuring system, DORIS or GNSS), as 

well as research axis and Earth's polar motion (by interferometry system, Very Long Baseline Interferometry) has indicated 

that POD (Precise Orbit Determination) is a strict requirement. The aim of this study is to introduce equations of movement, 

geometry problems and coordinates transformation of the orbit calculating. According these basis, building a formula based 

on quasi-circular analytical theory of orbit perturbed first-order due to the Earth's gravity field. In practical, tests are effected 

by quasi-circular and Kaula theories and the comparison of the results with a numerical integration based upon Eigen type 

models is convincing. 
 
Keywords: Precise Orbit Determination - POD; perturbed orbit theory; Earth’s gravity field. 

Introduction 

    Consider the relation between a central body of 

volume M (assuming the Earth) and another body of 

volume m (assuming an artificial satellite in an orbit 

around the Earth), we can establish the equations of 

non-perturbe orbital movement from the formula of 

two body problem. 

According to the Newton’s second law, the trajectory 

of second body is like a conic, where its foci is the 

gravity center of central body. The motion of satellite 

around the central body are described by three 

Kepler’s laws: 

- The planet (assuming the satellite) describes the 

elliptical trajectories, where the Sun (assuming the 

Earth) is one of two foci. 

- Area law : the rayons vectors of planets sweep equal 

area during the same time. 

- Square of the revolution period (T) of one planet is 

directly proportional to the cube of semi-major (a) of 

the planet’s elliptical trajectory: n2 a3 = GM = µ, 

where n = 2p/T and G is a constant of universal 

gravitation. The state vector of satellite is configured 

by its position and velocity in coordinates or the 

orbital elements. 

       

1. Orbital dynamics 

     At first, the orbital dynamic has the object to 

calculate the ephemeris of bodies in the space. The 

essential elements of orbital dynamics are based on 

the constructions of a model with the forces present, 

the choice of reference frame and the integration of 

movement equations. 

     The types of trajectories can be much varied, but  

our main work focus on quasi-circular orbits around 

the Earth. We calculate trajectories either without 

taking into account the observations, that is 

extrapolation of initial conditions, or by taking into 

account the observations, that is the restitution (or 

compensation) of parameters of initial conditions. 
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That is therefore indispensable, in the orbit 

calculating, to approached the questions: 1) the 

choice of space frames, the time to write and integrate 

the movement equations on the one hand and to 

model the observations on the other hand. 2) the 

connections between different frames. 3) the 

parameterisation of movement - in Cartesian 

coordinates, classical keplerian elements or canonical 

variables, etc-.  

    The representation of orbit perturbation is mainly 

based on analytical theory in keplerian orbital 

elements (Kaula, 1966). However, the nature of space 

missions impose often to know the expression of 

perturbations in term of coordinates. The benefit of 

using directly coordinates is twofold in the 

development an analytical theory of satellite and for 

the applications in space geodesy. We are interested 

in analytical theory because it allows us to study soon 

the general or global characteristics of trajectories. 

Here are some  basic criterion related to the 

establishment of analytical solution of  integration of 

movement equations: 1) the theory is unique, and the 

relations are the same for all studying cases. 2) the 

literatures relations between causes (model 

coefficients) and effects (pertubative terms on the 

trajectories) are written only one time. We don't 

manipulate any data and adjustment of initial 

conditions is carried out in such an empirical way to 

find, for every period, the set of initial mean 

parameters of orbit. 

 

1.1.  The fundamental equations 

       Equations of movement:  To spot the satellite in 

the space, we use either position 𝑥⃗(x,y,z) and velocity  

𝑥⃗ ̇ (𝑥̇, 𝑦̇, 𝑧̇) vectors or orbital elements. In a fix and 

inertial frame, the Lagrangian expression can be 

written as: 

           𝐿 = 𝑇 + 𝑈 =
1

2
(𝑥̇2 + 𝑦̇2 + 𝑧̇2) +

𝜇

𝑟
            (1)                                                              

µ = GM: produce of gravitational constant - G and 

the mass of the Earth - M 

(𝑥̇, 𝑦̇, 𝑧̇) : the components of velocity vector and 

geocentrical rayon r 

T : kinetic energy 

U:  potential (depends on the positions) 

Dynamical equations, from fundamental principle, 

have an expression simple in geocentrical rectangular 

coordinates. Thus, it can be described in an inertial 

frame for a satellite of mass m : 

                 𝑥̈ = −
𝜇

𝑟3
𝑥 + ∑

𝜕𝑈𝑖

𝜕𝑥𝑖 + ∑
𝐹𝑗

𝑚𝑗
                  (2)                                                              

(x, y, z) the components of position vector 𝑥⃗ 

Ui : the perturbed potentials (potential of fix gravity, 

variable parts, potential of tides, etc.) 

Fj : the perturbed forces 

      The mechanism integration of these equations is 

not simple if the general solution is taken into 

account. In case a perturbed potential appears, the 

system of movement equations is no longer 

integrable by analytical method. 

      These equations are practical for numerical 

integration. In contrast, by analytical method, if we 

want to get round the particular difficulty to the 

integration, we can consider unlimited development 

of solution “around” one simple geometrical 

solution, that is the problem of two bodies. In these 

conditions, the choice of parameters (coordinates or 

elements) and the choice of integration frame are 

significant. But changing of parameters, the 

expression of perturbed gravity potential is expressed 

“a priori” in spherical coordinates in a frame related 

to the center mass of the Earth, need to be 

transformed. 

 

1.2. Kaula theory in orbital elements 

We present here a short reminder of Kaula 

theory, which uses classical keplerian orbital 

elements -  E ={a, e, i, Ω, ω, M}, in the framework of 

lagrangian approach. 
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       In this case, the elements suffer from the 

variations of coefficents over time. On the other way, 

we show that it is not only the divisions by zero to  Ω 

and ω (if i = 0) or ω, M (if e = 0), but also two 

elements Ω, ω are not defined in these cases. Then if 

we replace by the sets of six variables ''non singular'', 

the equations are more complicated, because of the 

mixing of metrical and angular elements. 

 

1.3. Quasi-circular theory in spherical coordinates 

       Considering the “natural” development of 

terrestrial gravity potential in spherical coordinates, 

as soon as considering circular or quasi-circular 

trajectories, we choose the parameters as spherical 

coordinates (r, φ, λ). They allow us to represent in a 

simple way (in case non-perturbed) almost the cases 

envisaged. This avoids the disadvantage of Lagrange 

classical equations, that is Kaula theory (in orbital 

elements) in the case of eccentricity nil (e=0). 

       Theory of (Bois, 1992), as based theory on 

equations of second degree by time, allows to take 

into account of potentials and forces. If we choose a 

geocentrical frame to represent the trajectory of 

satellite, we have a relation between the coordinates 

(x, y, z) and ( r, φ, λ) in equatorial plane by eq.4. 
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                                   (4) 

      But if we consider in the orbital plane of the 

trajectory, the geometrical solution becomes (r = r0, 

φ=φ0, λ= n(t-t0)+λ0). They can serve from base 

(solution called zero order) to develop a perturbed 

solution. 

   Then this implies to establish the movement 

equations of satellite, in using spherical coordinates 

in the orbital plane, in relation to the inertial fix 

(3) 
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frame. Therefore it has to calcul the composition of 

velocity (derivative of position) between fix frame 

and our frame of integration. In this case, there are 

two rotations to carry out : one arounds Oz of Ω(t) 

(angle corresponding to node of trajectory and its 

temporal derived due to flattening of the Earth) and 

one arounds Ox of i (inclination of orbital plane with 

respect to fix plane Oxy that we consider as constant). 

    Following the Lagrange algorithm, we form the 

movement equations by spherical coordinates in fix 

frame Oxyz. In the kinetic energy eq. 5 

   𝑇 =
1

2
(𝑟̇2 + (𝑟𝜑̇)2 + (𝑟𝑐𝑜𝑠𝜑𝜆̇)2)        (5)                                                      

(𝑟 ̇ ), ( 𝑟𝜑̇ ), ( 𝑟𝑐𝑜𝑠𝜑𝜆̇ ) are three components of 

coordinates of the velocity which give us the 

movement equations (6) 

          

{
 
 

 
 𝑟̈ = 𝑟 𝑐𝑜𝑠2 𝜑𝜆̇2 −

𝜇

𝑟2

𝜑̈ = −2
𝑟̇

𝑟
𝜑 ̇ −  𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑𝜆̇2

𝜆̈ = −2
𝑟̇

𝑟
𝜆̇ +

2𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜑
𝜆̇𝜑̇

                                                                    

       Considering the movement equations in the 

mean precesse orbital plane (Ox'y'z') due to the 

rotations Ω(t) and i, we have new kinetic energy eq.7. 

The coordinates of satellite in this plane is described 

by the relation (x, y, z)T = R3(-Ω(t))R1(i) 

(x', y', z')T. 

 𝑇 =
1

2
(𝑟 ′̇

2
+ (𝑟′ 𝜑̇′𝑟′𝛺̇sin 𝑖 𝑐𝑜𝑠𝜆′)2(𝑟′𝑐𝑜𝑠𝜑′(𝜆̇′ −

𝛺̇𝑐𝑜𝑠𝑖) − 𝑟′𝑠𝑖𝑛𝜑′ 𝛺̇𝑠𝑖𝑛 𝑖 𝑠𝑖𝑛𝜆′)2)            
       From eq.7, we rewrite the expression of 

movement eq.8 that is a function of parameters of 

coordinates (r', φ', λ') and rotation angles (Ω, i). 

𝐿 = 𝑇 + 𝑈(𝑟′, 𝜑′, 𝜆′; 𝑖, 𝛺)                     (8) 

       According to first order theory of (Exertier and 

Bonnefond, 1997) to separate spherical coordinates 

in two parts : 1. Initial solution (r'0, φ'0, λ'0 : problem 

of two bodies) and 2. Perturbations on the orbit (r'1, 

φ'1, λ'1). We then developed eq.8 to obtain new 

movement eq.9 of  perturbed components 

 

{
 
 

 
 Ɛ𝑟̈1

′ − 3Ɛ𝑛2𝑟1
′ − 2Ɛ𝑟0

′𝑛𝜆̇1
′ − 2Ɛ𝑟0

′𝑛𝛺̇ cos 𝑖 = −
𝜕𝑈∗

𝜕𝑟1
′

Ɛ𝜑̈1
′ + Ɛ𝜑1

′ (𝑛 − 𝛺̇ cos 𝑖)2 + 2Ɛ𝑛𝛺̇ sin 𝑖 sin 𝜆′ =
1

𝑟′0
2

𝜕𝑈∗

𝜕𝜑1
′

            Ɛ𝜆̈1
′ +

2

𝑟0
′ Ɛ′𝑟̇1

′(𝑛 − 𝛺̇ cos 𝑖) =
1

𝑟′0
2

𝜕𝑈∗

𝜕𝜆1
′

                                            

        

 

2. Formula of perturbed terrestrial potential   

      The expression of gravitational perturbed 

potential expressed in spherical coordinates in a 

frame related to center of mass of the Earth would be 

as follow eq.10 (with r0, φ0, λ0 in the fix frame of the 

Earth): 

0 0

2 00 0

* (sin )( )exp

l
l

e
lm lm lm

l m

a
U P C jS jm

r r


 



 

 
  

 
   

ae : equatorial radius (km) 

Clm, Slm : Normalize spherical harmonic coefficients 

described the gravity potential. 

Plm : Associated functions of Legendre. 

 r0, φ0, λ0 : Spherical coordinates of satellite. 

     Following the parameters used, we developed  

perturbed potential to the satellite, with the variables 

of the solution. By keplerian orbital elements (Kaula) 

or spherical coordinates in the orbital plane (in case 

quasi-circular orbit) we then evaluate the 

perturbations. 

2.1. Form of perturbations in keplerian elements 

      We note here a model of perturbed potential by 

function of orbital elements of satellite (Kaula) in 

inertial frame (Zarrouati, 1987). 
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With the sidereal angle of the Earth: 

( 2 ) ( 2 ) ( )lmpq l p q M l p m        

One important step in the transformation U* (11) is 

necessary to take account the terms : 
1
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where the semi-major axis “a” is introduced in 

equation 3.9 of (Kaula, 1966): 

2

0

1 cos

1

a e v

r e






 

Eq.11 introduces two functions of inclination Flmp(i) 

and eccentricity Glpq(e), where Glpq(e) functions 

allows to transform, in the orbital plane, the formula 

in functions of polar coordinates r and ʋ that depend 

on keplerian elements e and M: 
1

0

exp .(( 2 ) ) ( )exp .(( 2 ) )

l

lpq

q

a
i l p G e i l p q M

r

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An integration of eq.11 allows to identify the 

signature of harmonic spherical coefficients (with the 

set lmpq) intervening in the expression of perturbed 

potential. So we developed tools to identify the 

amplitudes and periods of perturbations (in terms of 

short, average, long periods and secular effects of 

angles) by frequencys of lmpq sets: 𝜓̇𝑙𝑚𝑝𝑞 = (𝑙 −

2𝑝 + 𝑞)𝑀̇ + (𝑙 − 2𝑝)ѡ̇ + 𝑚(𝛺̇ − 𝜃̇)
     So we see that the eq.11 is well adapted to the 

terms :  

'

'

'

( )
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lpq
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F i
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G
de

dS
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d
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




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                  (12)                                                       

That gives us the eq.13 which are always 

harmonical functions of ψlmpq argument defined in 

eq.11. The periodical terms are organized by set of 

index (lmpq) corresponding to frequency 𝜓̇𝑙𝑚𝑝𝑞 . 

(7) 

(9) 

(10) 

(6) 

(11) 
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2.2. Form of perturbations in spherical coordinates 

       We applied, for quasi-circula orbit, a form of 

perturbed potential by (Balmino, 1996). In this case, 

we are considering spherical coordinates of satellite 

in the orbital plane to evaluate directly the effects of 

perturbed potential U* (eq.14) to orbit. 
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      According to the properties useful of Legendre 

polynomial and functions, we have derived 

expressions of perturbed potential in spherical 

coordinates corresponding to eq.15 : 
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(15) 

      Obviously, we have three pairs of 

correspondence between (9) and (15) equations 

which help us to determine the constant, secular and 

periodical terms of perturbations in first-order by 

algorithm of integration  (Bois, 1992). Difference 

from Kaula theory, we note that in this case the theory 

is developed with only sets of index (lmk) and the 

frequency  𝜓̇𝑘𝑚 = 𝑘𝜆̇0
′ +𝑚(𝛺̇ − 𝜃̇), with 𝜆̇0

′ = 𝑛 

        

3. Calculating of applications 

 

3.1 Inclination functions  

      We have discussed above two approaches to 

calculate perturbations of first-order: 1, Kaula theory 

with orbital elements for satellite trajectories 

different zero and 2, Analytical theory of (Bois 1992) 

then developed by (Exertier and Bonnefond, 1997) 

with spherical coordinates for quasi-circular 

trajectories. Analyzing of two theories shows that, for 

Kaula approach, it is difficult to determine elements 

in case of orbital plane inclination (i) or factor 

eccentricity (e) are zero. On the other hand, 

calculating of partial derived in spherical coordinates 

is not simple, because of the difficulty when 

calculating inclination function and Legendre 

polynomial and functions. The values of Legendre 

functions  increase very quickly according to l index 

growth, it is not favorable for numerical calculating. 

In addition, the efficiency and stability of the method 

to calculate inclination functions are challenging 

      In our case, we developed tools to calculate 

inclination functions 𝑑̅𝑙𝑚𝑘(𝑖)  in normalized 

harmonic coefficients by stable recurrences of 

(Sneeuw, 1992). The table of Fig.1 shows the 

structure of harmonic coefficients that has a 

dimension of index l = 2÷lMax, m = 0÷l, k = -l÷l 

 

 
Fig.1 Calculating diagram of harmonic coefficients 

 

       After both of tests for these recurrences of 

Sneeuw with normalized (in red) and denormalized 

(in black) coefficients by then in comparison with 

calculation by polynomials and functions of 

Legendre (in green). The results Fig.2 shows that the 

denormalized version is only stable up to degree 85 

while normalized version can be stable more than 

index 300 (this case shows only up to degree 150). 

 

 

Fig.2 Stability of recurrences in normalized (red) and 

denormalized (black) versions 

 

 3.2 Spectrum of perturbations 

       Thanks to inclination functions 𝑑̅𝑙𝑚𝑘(𝑖)  with 

normalized harmonic coefficients, we calculated 

spectrum of perturbation from gravity field Eigen 

models, which are built by harmonic coefficients Clm, 

Slm, in some different orbits. 

       The construction of coefficients set up to degree 

and order 50 in gravity field model EIGEN-

GRGS.RL02bis.MF. This allows us to calculate 

frequencies of perturbations acting on the orbits of 

Jason-2, Saral and LAGEOS1&2 (Fig.3). In our 

calculation for 10 days, we neglected terms under 

0.01m and the spectrums show us radial amplitude (in 

meter) of coefficients of sets (lmk). 
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Fig.3a Periods of radial perturbations (in meter) from 

coefficients of EIGEN-GRGS.RL02bis.MF gravity 

field model for: Jason-2 and Saral 

 

 
       Fig.3b Periods of radial perturbations (in meter) 

from coefficients of EIGEN-GRGS.RL02bis.MF 

gravity field model for: LAGEOS-1&2 

 

      Although there is no difference in the forms of 

spectrums, but we can see the most density of sets in 

case of Saral. This shows the impact of perturbation 

cause of gravity potential depending on altitude and 

inclination factors.  

 

  3.3 Discussion of results 

      Evaluating ability and stability of analytical 

quasi-circular (in case e < 0.003) and Kaula (in case 

e > 0.003) theories.  

 

 

Fig.4a Differences (in meter) between quasi-circular 

theory and numerical integration for satellite orbit: 

Jason-2  

       Tests are effected to determine amplitude of 

perturbed sets (coefficients of each sets lmk for quasi-

circular case and lmpq for Kaula case, respectively) 

of EIGEN-GRGS.RL02bis.MF gravity potential. 

        We chose satellite orbits of Jason-2 (at altitude 

1335km and inclination 66°), Saral (altitude 780 km, 

inclination 98°) to test quasi-circular theory and two 

satellite orbits LAGEOS-1&2 (at about 6000km of 

altitude, 110° of inclination) to test Kaula theory. All 

of the satellite orbits are extrapolated by using static 

gravity model EIGEN-GRGS.RL02bis.MF (GDR-D 

generation based on 8 years of GRACE+LAGEOS 

data). 

 

 
Fig.4b Differences (in meter) between quasi-circular 

theory and numerical integration for satellite orbit: 

Saral 

 

 
Fig. 4c Differences (in meter) between Kaula theory 

and numerical integration for satellite orbit: 

LAGEOS1&2 

 

      The results of some comparisons, between 

analytical and numerical theories in case of  Kaula 

theory for LAGEOS1&2 (Fig.4c) and quasi-circular 

theory for Jason-2 (Fig.4a) and Saral (Fig.4b), show 

that differences in the order of  magnitude of  a coupe 

of tens  of meters on a, e, i or r elements and around 
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ten of meters on the angles. Note that we have no  

initialization process of mean elements at the 

beginning, that maybe contribute some improvement. 

In addition it is important to take into account of 

secular effects of second order 𝐶2,0
2  on the angles. 

This problem would be a part of the future work. 

      

4. Conclusion 

      In this article, we introduced equations of 

movement in orbit calculating. Beside to show the 

Kaula theory in orbital elements, we developed an 

analytical theory in spherical coordinates (call quasi-

circular orbit) for orbits with very small eccentricity 

(e < 0.003). These analytical theories will allow us to 

calculate almost the cases of orbital trajectory. In 

addition, they are more advantage than dynamical 

methods to predict the general characteristics of 

trajectories. In pratically, we are based on analytical 

theories to calculate amplitude of perturbations of 

EIGEN-GRGS.RL02bis.MF gravity field model in 

order several kilometres (Fig.3a & 3b), which gave 

us a relative precision of 10-3 to order of tens meters 

in orbit calculating (Fig.4a,b,c). It is important to 

continue to study this consequence in case of error 

propagation (by analytical integration) less than 1m 

to detect the quantities less than 1 mm in calculating 

orbit.
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